Exploring Roemheld syndrome: a comprehensive review with proposed diagnostic criteria

Herz. 2024 May 7. doi: 10.1007/s00059-024-05249-y. Online ahead of print.

ABSTRACT

Roemheld syndrome (RS) is a condition that triggers cardiac symptoms due to gastrointestinal compression of the heart. It is often misdiagnosed as other types of cardiac or digestive disorders, leading to unnecessary treatments and reduced quality of life. Here, we provide a thorough review of RS, covering its pathogenesis, etiology, diagnosis, treatment, and outcome. We found that a number of conditions, including gallstones, hiatal hernia, excessive gas, and gastroesophageal reflux syndrome, can cause RS. The symptoms of RS can include chest pain, palpitations, shortness of breath, nausea, vomiting, bloating, and abdominal pain. Clinical history, physical examination, electrocardiograms, and improvement in symptoms following gastrointestinal therapy can all be used to identify RS. We also propose a set of criteria, the IKMAIR criteria, to improve the diagnostic approach for this condition. Dietary changes, lifestyle adjustments, pharmaceutical therapies, and surgical procedures can all be used to control RS. Depending on the underlying etiology and the outcome of treatment, RS has a varying prognosis. We conclude that RS is a complicated and understudied disorder that needs more attention from researchers and patients as well as from medical professionals. We recommend the inclusion of RS in the differential diagnosis for individuals with gastrointestinal problems and unexplained cardiac symptoms. Additionally, we advise treating RS holistically by attending to its cardiac and gastrointestinal components.

PMID:38714552 | DOI:10.1007/s00059-024-05249-y

Activation of the non-neuronal cholinergic cardiac system by hypoxic preconditioning protects isolated adult cardiomyocytes from hypoxia/reoxygenation injury

Am J Physiol Heart Circ Physiol. 2024 May 3. doi: 10.1152/ajpheart.00211.2024. Online ahead of print.

ABSTRACT

BACKGROUND: Activation of the vagus nerve mediates cardioprotection and attenuates myocardial ischemia/reperfusion (I/R) injury. In response to vagal activation, acetylcholine (ACh) is released from the intracardiac nervous system (ICNS) and activates intracellular cardioprotective signaling cascades. Recently, however, a non-neuronal cholinergic cardiac system (NNCCS) in cardiomyocytes has been described as an additional source of ACh.

AIM: To investigate whether the NNCCS mediates cardioprotection in absence of vagal and ICNS activation. For that, we used a reductionist approach of isolated adult rat ventricular cardiomyocytes in absence of neuronal cells with hypoxic preconditioning (HPC) as protective stimulus.

METHODS: Adult rat ventricular cardiomyocytes were isolated, absence of neuronal cells was confirmed, HPC was induced by 10/20 min hypoxia/reoxygenation (H/R) before subjection to 30/5 min H/R to simulate I/R injury. Cardiomyocyte viability was assessed by trypan blue staining. Intra- and extracellular ACh was quantified using liquid chromatography-coupled mass spectrometry at baseline, after HPC, after hypoxia, and after reoxygenation, respectively. In a subset of experiments, muscarinic/nicotinic ACh receptor (mAChR/nAChR) antagonists were added during HPC or during H/R.

RESULTS: Cardiomyocyte viability at baseline (69±4%) was reduced by H/R (10±3%). With HPC cardiomyocyte viability was preserved after H/R (25±6%). Intra- and extracellular ACh increased during hypoxia, HPC further increased both intra- and extracellular ACh (from 0.9±0.7 to 1.5±1.0 nmol/mg; from 0.7±0.6 to 1.1±0.7 nmol/mg). Addition of mAChR and nAChR antagonists during HPC had no impact on HPC´s protection, however protection was abrogated when antagonists were added during H/R (cardiomyocyte viability after H/R: 23±5%; 13±4%).

CONCLUSION: Activation of the NNCCS is involved in cardiomyocyte protection: HPC increases intra- and extracellular ACh during H/R, and m-/nAChRs are causally involved in HPC´s cardiomyocyte protection during H/R. The interplay between upstream ICNS activation and the NNCCS activation to myocardial cholinergic metabolism and cardioprotection needs to be investigated in future studies.

PMID:38700468 | DOI:10.1152/ajpheart.00211.2024

Sodium oligomannate activates the enteroendocrine-vagal afferent pathways in APP/PS1 mice

Acta Pharmacol Sin. 2024 May 3. doi: 10.1038/s41401-024-01293-w. Online ahead of print.

ABSTRACT

Enteroendocrine cells (EECs) and vagal afferent neurons constitute functional sensory units of the gut, which have been implicated in bottom-up modulation of brain functions. Sodium oligomannate (GV-971) has been shown to improve cognitive functions in murine models of Alzheimer’s disease (AD) and recently approved for the treatment of AD patients in China. In this study, we explored whether activation of the EECs-vagal afferent pathways was involved in the therapeutic effects of GV-971. We found that an enteroendocrine cell line RIN-14B displayed spontaneous calcium oscillations due to TRPA1-mediated calcium entry; perfusion of GV-971 (50, 100 mg/L) concentration-dependently enhanced the calcium oscillations in EECs. In ex vivo murine jejunum preparation, intraluminal infusion of GV-971 (500 mg/L) significantly increased the spontaneous and distension-induced discharge rate of the vagal afferent nerves. In wild-type mice, administration of GV-971 (100 mg· kg-1 ·d-1, i.g. for 7 days) significantly elevated serum serotonin and CCK levels and increased jejunal afferent nerve activity. In 7-month-old APP/PS1 mice, administration of GV-971 for 12 weeks significantly increased jejunal afferent nerve activity and improved the cognitive deficits in behavioral tests. Sweet taste receptor inhibitor Lactisole (0.5 mM) and the TRPA1 channel blocker HC-030031 (10 µM) negated the effects of GV-971 on calcium oscillations in RIN-14B cells as well as on jejunal afferent nerve activity. In APP/PS1 mice, co-administration of Lactisole (30 mg ·kg-1 ·d-1, i.g. for 12 weeks) attenuated the effects of GV-971 on serum serotonin and CCK levels, vagal afferent firing, and cognitive behaviors. We conclude that GV-971 activates sweet taste receptors and TRPA1, either directly or indirectly, to enhance calcium entry in enteroendocrine cells, resulting in increased CCK and 5-HT release and consequent increase of vagal afferent activity. GV-971 might activate the EECs-vagal afferent pathways to modulate cognitive functions.

PMID:38702501 | DOI:10.1038/s41401-024-01293-w

Use of Betaine HCl with Pepsin in Esophageal Cancer Patient: A Case Report

J Med Food. 2024 May 2. doi: 10.1089/jmf.2023.0174. Online ahead of print.

ABSTRACT

The principal mechanisms surrounding gastrointestinal (GI) side effects due to chemotherapy are unclear, whereas the information regarding symptom management of patients with esophageal cancer post-esophagectomy is lacking. Esophagectomy patients are left with significant anatomical changes to the GI tract, including the cutting of the vagus nerve, which regulates gastric secretions, gastric acid pH, and motility. A 76-year-old male patient self-referred himself to the clinical dietitian for nutritional management of chronic nausea, fatigue, weight loss, and dumping syndrome 9 months post-esophagectomy, which was not responsive to medications. A physical functional nutritional assessment with evaluation of diet history and elimination suggested gastric hypochlorhydria. Gastric acid is needed for the active absorption of iron, zinc, B complex vitamins, especially B12, and digestion of consumed proteins. A digestive supplement, betaine hydrochloric acid with pepsin (BHClP), was introduced, and the patient ingested 1 capsule containing 500 mg betaine hydrochloride and 23.5 mg pepsin prior to protein-containing meals and reported a substantial decrease in GI symptoms while eating a regular diet with no limitations. He gained necessary weight and energy for daily activities. After a few months, the patient discontinued BHClP, and GI symptoms and dumping syndrome returned, leading to a loss of 7.5% of his body weight. The patient reinitiated the supplement and GI symptoms dissipated, and weight was restored. BHClP provided metabolic therapeutic benefit to optimize the patient’s oral intake, preventing further complications and malnutrition. The success with BHClP for this patient case suggests that more research is needed to fully realize the mechanisms and clinical usage.

PMID:38695854 | DOI:10.1089/jmf.2023.0174

Association between parental psychiatric disorders and risk of offspring autism spectrum disorder: a Swedish and Finnish population-based cohort study

Lancet Reg Health Eur. 2024 Apr 23;40:100902. doi: 10.1016/j.lanepe.2024.100902. eCollection 2024 May.

ABSTRACT

BACKGROUND: Roughly more than one in six adults worldwide suffer from psychiatric conditions. Sporadic studies have associated parental psychiatric disorders with autism spectrum disorder in offspring. Comprehensively examining the association between parental psychiatric disorders and offspring autism spectrum disorder is needed to guide health policies, and to inform etiologic studies.

METHODS: We included all children born in Sweden and Finland 1997-2016. Diagnoses were clinically ascertained from National Registers through 2017. We calculated adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for autism spectrum disorder in offspring of fathers and mothers with psychiatric disorders, in both parents jointly and across co-occurring conditions.

FINDINGS: Among 2,505,842 children, 33,612 were diagnosed with autism spectrum disorder, of which 20% had a parent with psychiatric disorders. The risk of autism spectrum disorder was increased across all psychiatric disorders in fathers (Sweden: aHR = 2.02, 95% CI = 1.92-2.12; Finland: aHR = 1.63, 95% CI = 1.50-1.77), mothers (Sweden: aHR = 2.34, 95% CI = 2.24-2.43; Finland aHR = 2.12, 95% CI = 1.92-2.28), or both parents (Sweden: aHR = 3.76, 95% CI = 3.48-4.07; Finland aHR = 3.61, 95% CI = 3.20-4.07), compared to neither parents. Co-occurrence of parental psychiatric disorders further increased risk (e.g., Sweden: for one, two or ≥three different diagnostic categories compared to no diagnosis, in fathers aHR = 1.81, 2.07, 2.52; in mothers aHR = 2.05, 2.63, 3.57).

INTERPRETATION: Psychiatric disorders in both parents conveyed the highest risk of offspring autism spectrum disorder, followed by mothers and then fathers. The risk increased with number of co-occurring disorders. All parental psychiatric disorders were associated with increased the risk of autism spectrum disorder. To reliably assess the risk of autism spectrum disorder in children, a comprehensive history incorporating the full range of parental psychiatric disorders is needed beyond solely focusing on familial autism spectrum disorder.

FUNDING: Swedish-Research-Council-2021-0214.

PMID:38689608 | PMC:PMC11059471 | DOI:10.1016/j.lanepe.2024.100902

Transcutaneous Auricular Vagus Nerve Stimulation in Adolescent Treatment Resistant Depression – A Case Report

J Pediatr. 2024 Apr 27:114078. doi: 10.1016/j.jpeds.2024.114078. Online ahead of print.

ABSTRACT

Adolescence is a critical time period for the onset of depression and many patients do not respond to treatment. Transcutaneous auricular vagus nerve stimulation (taVNS) may be a promising alternative. Here we present the case of an adolescent girl with treatment resistant depression, receiving taVNS over the course of 7.5 months.

PMID:38685314 | DOI:10.1016/j.jpeds.2024.114078

Potential value of CT-based comprehensive nomogram in predicting occult lymph node metastasis of esophageal squamous cell paralaryngeal nerves: a two-center study

J Transl Med. 2024 Apr 30;22(1):399. doi: 10.1186/s12967-024-05217-4.

ABSTRACT

PURPOSE: The aim of this study is to construct a combined model that integrates radiomics, clinical risk factors and machine learning algorithms to predict para-laryngeal lymph node metastasis in esophageal squamous cell carcinoma.

METHODS: A retrospective study included 361 patients with esophageal squamous cell carcinoma from 2 centers. Radiomics features were extracted from the computed tomography scans. Logistic regression, k nearest neighbor, multilayer perceptron, light Gradient Boosting Machine, support vector machine, random forest algorithms were used to construct radiomics models. The receiver operating characteristic curve and The Hosmer-Lemeshow test were employed to select the better-performing model. Clinical risk factors were identified through univariate logistic regression analysis and multivariate logistic regression analysis and utilized to develop a clinical model. A combined model was then created by merging radiomics and clinical risk factors. The performance of the models was evaluated using ROC curve analysis, and the clinical value of the models was assessed using decision curve analysis.

RESULTS: A total of 1024 radiomics features were extracted. Among the radiomics models, the KNN model demonstrated the optimal diagnostic capabilities and accuracy, with an area under the curve (AUC) of 0.84 in the training cohort and 0.62 in the internal test cohort. Furthermore, the combined model exhibited an AUC of 0.97 in the training cohort and 0.86 in the internal test cohort.

CONCLUSION: A clinical-radiomics integrated nomogram can predict occult para-laryngeal lymph node metastasis in esophageal squamous cell carcinoma and provide guidance for personalized treatment.

PMID:38689366 | PMC:PMC11059581 | DOI:10.1186/s12967-024-05217-4

Swallowing-like activity elicited in neonatal rat medullary slice preparation

Brain Res. 2024 Apr 26;1837:148955. doi: 10.1016/j.brainres.2024.148955. Online ahead of print.

ABSTRACT

Swallowing is induced by a central pattern generator in the nucleus tractus solitarius (NTS). We aimed to create a medullary slice preparation to elucidate the neural architecture of the central pattern generator of swallowing (Sw-CPG) and record its neural activities. Experiments were conducted on 2-day-old Sprague-Dawley rats (n = 46). The brainstem-spinal cord was transected at the pontomedullary and cervicothoracic junctions; the medulla was sliced transversely at thicknesses of 600, 700, or 800 μm. The rostral end of the slice was 100 μm rostral to the vagus nerve. We recorded hypoglossal nerve activity and electrically stimulated the vagus nerve or microinjected bicuculline methiodide (BIC) into the NTS. The 800-μm slices generated both rhythmic respiratory activity and electrically elicited neural activity. The 700-μm slices generated only respiratory activity, while the 600-μm slices did not generate any neural activity. BIC microinjection into the NTS in 800-μm slices resulted in the typical activity that closely resembled the swallowing activity reported in other experiments. This swallowing-like activity consistently lengthened the respiratory interval. Despite complete inhibition of respiratory activity, weak swallowing-like activity was observed under bath application of a non-NMDA receptor antagonist. Contrastingly, bath application of NMDA receptor antagonists resulted in a complete loss of swallowing-like activity and no change in respiratory activity. These results suggest that the 800-μm medullary slice preparation contains both afferent and efferent neural circuits and pattern generators of swallowing activity. Additionally, NMDA receptors may be necessary for generating swallowing activity. This medullary slice preparation can therefore elucidate Sw-CPG neural networks.

PMID:38679314 | DOI:10.1016/j.brainres.2024.148955

Characterization, number, and spatial organization of nerve fibers in the human cervical vagus nerve and its superior cardiac branch

Brain Stimul. 2024 Apr 25:S1935-861X(24)00078-0. doi: 10.1016/j.brs.2024.04.016. Online ahead of print.

ABSTRACT

BACKGROUND: Electrical stimulation of the vagus nerve (VN) is a therapy for epilepsy, obesity, depression, and heart diseases. However, whole nerve stimulation leads to side effects. We examined the neuroanatomy of the mid-cervical segment of the human VN and its superior cardiac branch to gain insight into the side effects of VN stimulation and aid in developing targeted stimulation strategies.

METHODS: Nerve specimens were harvested from eight human body donors, then subjected to immunofluorescence and semiautomated quantification to determine the signature, quantity, and spatial distribution of different axonal categories.

RESULTS: The right and left cervical VN (cVN) contained a total of 25,489 ± 2,781 and 23,286 ± 3,164 fibers, respectively. Two-thirds of the fibers were unmyelinated and one-third were myelinated. About three-quarters of the fibers in the right and left cVN were sensory (73.9 ± 7.5% versus 72.4 ± 5.6%), while 13.2 ± 1.8% versus 13.3 ± 3.0% were special visceromotor and parasympathetic, and 13 ± 5.9% versus 14.3 ± 4.0% were sympathetic. Special visceromotor and parasympathetic fibers formed clusters. The superior cardiac branches comprised parasympathetic, vagal sensory, and sympathetic fibers with the left cardiac branch containing more sympathetic fibers than the right (62.7 ± 5.4% versus 19.8 ± 13.3%), and 50% of the left branch contained sensory and sympathetic fibers only.

CONCLUSION: The study indicates that selective stimulation of vagal sensory and motor fibers is possible. However, it also highlights the potential risk of activating sympathetic fibers in the superior cardiac branch, especially on the left side.

PMID:38677543 | DOI:10.1016/j.brs.2024.04.016

Neuroregulatory Effects of Microcone Patch Stimulation on the Auricular Branch of the Vagus Nerve and the Prefrontal Cortex: A Feasibility Study

J Clin Med. 2024 Apr 20;13(8):2399. doi: 10.3390/jcm13082399.

ABSTRACT

Background: The primary purpose of this study was to preliminarily examine the effects of autonomic nervous system activity on the dorsolateral prefrontal cortex. Recent studies have examined approaches to modulating autonomic activity using invasive and non-invasive methods, but the effects of changes in autonomic activity during cognitive tasks on the dorsolateral prefrontal cortex have not been fully investigated. The purpose of this preliminary investigation was to examine changes in autonomic activity and blood oxygen saturation in the dorsolateral prefrontal cortex during reading tasks induced by vagus nerve stimulation using a microcone patch. Methods: A cohort of 40 typically developing adults was enrolled in this study. We carefully examined changes in autonomic nervous system activity and blood oxygen saturation in the dorsolateral prefrontal cortex during a reading task in two conditions: with and without microcone patch stimulation. Results: Significant changes in brain activation in the dorsolateral prefrontal cortext due to microcone patch stimulation were confirmed. In addition, hierarchical multiple regression analysis revealed specific changes in reading task-related blood oxygen saturation in the dorsolateral prefrontal region during microcone patch stimulation. Conclusions: It should be recognized that this study is a preliminary investigation and does not have immediate clinical applications. However, our results suggest that changes in autonomic nervous system activity induced by external vagal stimulation may affect activity in specific reading-related regions of the dorsolateral prefrontal cortex. Further research and evaluation are needed to fully understand the implications and potential applications of these findings.

PMID:38673672 | DOI:10.3390/jcm13082399