Cureus. 2024 Apr 25;16(4):e59009. doi: 10.7759/cureus.59009. eCollection 2024 Apr.
ABSTRACT
Inflammatory bowel disease (IBD) refers to two chronic conditions of the digestive tract: ulcerative colitis (UC) and Crohn’s disease (CD), representing a progressive inflammatory process that mainly occurs in the gut, with frequent extra-intestinal manifestations. Even if remission is periodically obtained for some patients, the histological activity and digestive symptoms may continue, maintaining a persistent systemic inflammation that could induce further extra-intestinal complications and contribute to the development of neurodegenerative disease. C-reactive protein (CRP) is an acute-phase reactant that is widely accepted as a dominant serum biomarker in IBD. CRP consequently activates the complement cascade, supports the release of pro-inflammatory cytokines, and the clearance of microbial pathogens. All these processes facilitate further processes, including atherosclerosis and hypercoagulability, alteration of the intestinal microbiota, and the increased permeability of the intestinal barrier for neurotoxic substances produced by gut microorganisms, due to the presence of a high level of lipopolysaccharides. For IBD, the connection between intestinal inflammation and central nervous system inflammation could be explained through the activity of the vagus nerve, a carrier of cytokines, CRP, and toxic materials to the brain, potentially inducing vascular lesions and damage of the glial vascular unit, with further risk for degeneration within the central nervous system. CRP is a key marker for IBD pathogenesis and is able to dissociate into its monomeric form, mCRP, on contact with activated cell and tissue components via the systemic circulation. We hypothesize that the chronic inflammatory process within IBD could initiate neuroinflammation and neurodegeneration, and therefore, further investigation of the significance of chronically raised plasma of CRP and mCRP in patients with IBD is warranted, as it may represent a critical predictive factor associated with a later neurodegenerative risk. Any future initiative aimed at pharmacologic modulation of CRP (e.g., blocking CRP-mCRP dissociation), could represent a new therapeutic approach protecting against intestinal inflammation and concomitantly reducing the risk of neuroinflammation, neurodegeneration, and cognitive decline.
PMID:38665135 | PMC:PMC11045161 | DOI:10.7759/cureus.59009