A Cellulose-Rich Diet Disrupts Gut Homeostasis and Leads to Anxiety through the Gut-Brain Axis

ACS Pharmacol Transl Sci. 2024 Sep 9;7(10):3071-3085. doi: 10.1021/acsptsci.4c00270. eCollection 2024 Oct 11.

ABSTRACT

It is widely said that a healthy intestinal environment plays an essential role in better mental condition. One known dietary nutrient that maintains the intestinal environment is dietary fiber. A recent study showed that maintaining the intestinal environment with dietary fiber alleviated symptoms of psychiatric disorders in animals. However, such effects have only been reported with soluble fiber, which is highly fermentable and promotes short-chain fatty acid (SCFA) production, and not with insoluble fiber. Therefore, we aimed to verify whether insoluble fiber, such as cellulose, can alter emotion via changes in the gut. We divided mice into two groups and fed either a standard diet (SD, which contains both insoluble and soluble dietary fibers) or a cellulose-rich diet (CRD, which contains cellulose alone as the dietary fibers). We found that CRD-fed mice display increased anxiety-like behavior. CRD-fed animals also showed decreased intestinal SCFA levels along with increased intestinal permeability, dysmotility, and hypersensitivity. This behavioral and physiological effect of CRD has been completely abolished in vagotomized mice, indicating the direct link between intestinal environment exacerbation to the emotion through the gut-brain axis. Additionally, we found that amygdalar dopamine signaling has been modified in CRD-fed animals, and the opioid antagonist abolished this dopaminergic modification as well as CRD-induced anxiety. Altogether, our findings indicate that consumption of cellulose alone as the dietary fiber may evoke intestinal abnormalities, which fire the vagus nerve, then the opioidergic system, and amygdalar dopamine upregulation, resulting in the enhancement of anxiety.

PMID:39416961 | PMC:PMC11475280 | DOI:10.1021/acsptsci.4c00270

Vagus nerve stimulation for epilepsy: A narrative review of factors predictive of response

Epilepsia. 2024 Oct 16. doi: 10.1111/epi.18153. Online ahead of print.

ABSTRACT

Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy. However, there is a lack of reliable predictors of VNS response in clinical use. The identification of factors predictive of VNS response is important for patient selection and stratification as well as tailored stimulation programming. We conducted a narrative review of the existing literature on prognostic markers for VNS response using clinical, demographic, biochemical, and modality-specific information such as from electroencephalography (EEG), magnetoencephalography, and magnetic resonance imaging (MRI). No individual marker demonstrated sufficient predictive power for individual patients, although several have been suggested, with some promising initial findings. Combining markers from underresearched modalities such as T1-weighted MRI morphometrics and EEG may provide better strategies for treatment optimization.

PMID:39412361 | DOI:10.1111/epi.18153

Nerve ultrasound in amyotrophic lateral sclerosis: systematic review and meta-analysis

Neurol Res Pract. 2024 Oct 17;6(1):47. doi: 10.1186/s42466-024-00346-z.

ABSTRACT

BACKGROUND/ AIM: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons, causing progressive atrophy of muscles, hypertonia, and paralysis. This study aimed to evaluate the current evidence and effectiveness of ultrasound in investigating nerve cross-sectional area (CSA) of peripheral nerves, vagus and cervical roots in those with ALS compared with healthy controls and to pool the CSA measurements.

METHODS: A systematic search was conducted on Cochrane, Clarivate Web of Science, PubMed, Scopus, and Embase for the mesh terms nerve, ultrasonography, and amyotrophic lateral sclerosis. A quality assessment was performed using the New-Ottawa scale. In addition, a double-arm meta-analysis using Review Manager 5 software version 5.4 was performed.

RESULTS: From the seventeen studies included in this review, the overall mean difference showed that individuals with ALS had a significantly smaller CSA in comparison to healthy controls for median, ulnar, C6 root, and phrenic nerves. However, no significant difference in the CSA was found in radial, vagal, sural, and tibial nerves.

DISCUSSION: This study confirmed results of some of the included studies regards the anatomic sites, where nerve atrophy in ALS could be detected to potentially support the diagnosis of ALS. However, we recommend further large, prospective studies to assess the diagnostic value of these anatomical sites for the diagnosis of ALS.

CONCLUSIONS: Our findings confirmed specific anatomic sites to differentiate ALS patients from healthy controls through ultrasound. However, these findings cannot be used to confirm the ALS diagnosis, but rather assist in differentiating it from other diagnoses.

TRIAL REGISTRATION: Retrospectively registered on July 30th 2024 in PROSPERO (PROSPERO (york.ac.uk)) with ID574702.

PMID:39415277 | PMC:PMC11484457 | DOI:10.1186/s42466-024-00346-z

Vagal sensory neuron-derived FGF3 controls insulin secretion

Dev Cell. 2024 Oct 15:S1534-5807(24)00542-2. doi: 10.1016/j.devcel.2024.09.016. Online ahead of print.

ABSTRACT

Vagal nerve stimulation has emerged as a promising modality for treating a wide range of chronic conditions, including metabolic disorders. However, the cellular and molecular pathways driving these clinical benefits remain largely obscure. Here, we demonstrate that fibroblast growth factor 3 (Fgf3) mRNA is upregulated in the mouse vagal ganglia under acute metabolic stress. Systemic and vagal sensory overexpression of Fgf3 enhanced glucose-stimulated insulin secretion (GSIS), improved glucose excursion, and increased energy expenditure and physical activity. Fgf3-elicited insulinotropic and glucose-lowering responses were recapitulated when overexpression of Fgf3 was restricted to the pancreas-projecting vagal sensory neurons. Genetic ablation of Fgf3 in pancreatic vagal afferents exacerbated high-fat diet-induced glucose intolerance and blunted GSIS. Finally, electrostimulation of the vagal afferents enhanced GSIS and glucose clearance independently of efferent outputs. Collectively, we demonstrate a direct role for the vagal afferent signaling in GSIS and identify Fgf3 as a vagal sensory-derived metabolic factor that controls pancreatic β-cell activity.

PMID:39413782 | DOI:10.1016/j.devcel.2024.09.016

Effects of long-term transcutaneous auricular vagus nerve stimulation on circadian vagal activity in people with Prader-Willi Syndrome: A case-series

Res Dev Disabil. 2024 Oct 13;154:104855. doi: 10.1016/j.ridd.2024.104855. Online ahead of print.

ABSTRACT

BACKGROUND: Prader-Willi Syndrome (PWS) is a genetic neurodevelopmental disorder marked by disruptions in circadian rhythms and autonomic nervous system (ANS) activity, hyperphagia, and episodes of emotional outbursts. Previous trials suggest that both invasive and non-invasive vagus nerve stimulation (VNS) can reduce emotional outbursts in PWS, potentially through its effects on vagal activity.

AIM: This case series investigated the effects of transcutaneous auricular VNS (taVNS) on cardiac markers of circadian vagal activity, specifically heart rate variability (HRV) and heart rate (HR), and their potential links to improvements in emotional outbursts.

METHODS: Five individuals with PWS (mean age: 26.9 years; 3 males, 2 females) received four hours of daily taVNS for 12 months, followed by one month of two-hour daily sessions. Outcome measures included daily recording of emotional outbursts and every three months 24-h HRV and HR recordings. Mixed cosinor models were applied to analyze changes in circadian rhythms of HRV and HR. A linear mixed model was used to assess the predictive value of cardiac vagal activity on emotional outbursts.

RESULTS: Circadian amplitudes of HRV and HR were significantly higher at the end of the treatment compared to baseline (all p’s < .01). There was a significant increase in the rhythm-adjusted mean of HRV (p < .01), while the rhythm-adjusted HR mean significantly decreased, both indicating increased cardiac vagal activity. Higher rhythm-adjusted mean HRV predicted a lower number of emotional outbursts.

CONCLUSION: The results suggest that taVNS may be effective by targeting ANS activity in individuals with PWS, contributing to improvements in behavioral regulation.

PMID:39405838 | DOI:10.1016/j.ridd.2024.104855

Acute right-sided transcutaneous vagus nerve stimulation improves cardio-vagal baroreflex gain in patients with chronic heart failure

Clin Auton Res. 2024 Oct 14. doi: 10.1007/s10286-024-01074-9. Online ahead of print.

ABSTRACT

PURPOSE: The aim of this paper is to investigate the acute effects of short-term transcutaneous vagus nerve stimulation (tVNS) on cardio-vagal baroreflex gain and heart rate variability in patients with chronic heart failure (CHF).

METHODS: A total of 16 adults with CHF and left ventricular ejection fraction (LVEF) < 50% in sinus rhythm were enrolled (65 ± 8 years, 63% men, LVEF 40 ± 5%, 88% on beta-blockers, 50% on quadruple CHF therapy). Over a single experimental session, after a 10-min baseline recording, each patient underwent two trials of 10-min tVNS (Parasym Device, 200 µs, 30 Hz, 1 mA below discomfort threshold) at either the right or left tragus in a randomized order, separated by a 10-min recovery.

RESULTS: Compared with baseline, tVNS did not affect heart rate, blood pressure, and respiratory rate (p > 0.05), and no patients complained of discomfort or any adverse effect. Right-sided tVNS was associated with a significant increase in cardio-vagal baroreflex gain (from 5.6 ± 3.1 to 7.5 ± 3.8 ms/mmHg, ∆ 1.9 ± 1.6 ms/mmHg, p < 0.001), while no change was observed with left-sided tVNS (∆ 0.5 ± 2.0 ms/mmHg, p = 0.914). These findings were independent of stimulation-side order (excluding any carry-over effect) and consistent across sex, LVEF category, and HF etiology subgroups (p-value for interaction > 0.05).

CONCLUSIONS: Acute right-sided tVNS increases cardio-vagal baroreflex gain in patients with CHF and LVEF < 50%, with no tolerability concerns.

PMID:39402309 | DOI:10.1007/s10286-024-01074-9

tVNS alters inflammatory response in adult VPA-induced mouse model of autism: evidence for sexual dimorphism

FEBS Open Bio. 2024 Oct 14. doi: 10.1002/2211-5463.13889. Online ahead of print.

ABSTRACT

Autism is a neurodevelopmental disorder with limited treatment alternatives and which incidence is increasing. Some research suggests that vagus nerve simulation might lead to the reduction of certain symptom. Therefore, we aimed to examine the effect of bilateral transcutaneous auricular vagus nerve stimulation (tVNS) on the inflammatory response in an adult valproic acid (VPA) induced mouse (C57BL6) model of autism for the first time. The autism model was induced by oral VPA administration (600 mg·kg-1) to C57BL/6 pregnant mice on E12.5 days. The study included three groups: the VPA Transcutaneous Auricular Stimulation Group (VPA + tVNS), the VPA Control Group (VPA + sham), and the Healthy Control Group (Control + sham). Each group included 16 mice (8 M/8 F). Our results show that serum IL-1β and IL-6 levels were significantly higher in male VPA-exposed mice than controls. However, IL-1β was significantly lower, and IL-6, TNF- α, and IL-22 were not different in female VPA-exposed mice compared to the control group. Brain NLRP3 levels were significantly higher in both sexes in the VPA autism model (P < 0.05). tVNS application increased brain NLRP3 levels in both sexes and reduced serum IL-1β levels in male mice. We conclude that cytokine dysregulation is associated with the VPA-induced adult autism model, and the inflammatory response is more pronounced in male mice. tVNS application altered the inflammatory response and increased brain NLPR3 levels in both sexes. Further studies are needed to understand the beneficial or detrimental role of the inflammatory response in autism and its sexual dimorphism.

PMID:39401991 | DOI:10.1002/2211-5463.13889

Ultrasound-guided superior laryngeal nerve block: a randomized comparison between parasagittal and transverse approach

BMC Anesthesiol. 2024 Aug 3;24(1):269. doi: 10.1186/s12871-024-02612-8.

ABSTRACT

BACKGROUND: Different approach ultrasound-guided superior laryngeal nerve block was used to aid awake intubation, but little is known which approach was superior. We aimed to compare the parasagittal and transverse approaches for ultrasound-guided superior laryngeal nerve block in adult patients undergoing awake intubation.

METHODS: Fifty patients with awake orotracheal intubation were randomized to receive either a parasagittal or transverse ultrasound-guided superior laryngeal nerve block. The primary outcome was patient’s quality of airway anesthesia grade during insertion of the tube into the trachea. The patients’ tube tolerance score after intubation, total procedure time, mean arterial pressure, heart rate, Ramsay sedation score at each time point, incidence of sore throat both 1 h and 24 h after extubation, and hoarseness before intubation, 1 h and 24 h after extubation were documented.

RESULTS: Patients’ quality of airway anesthesia was significantly better in the parasagittal group than in the transverse group (median grade[IQR], 0 [0-1] vs. 1 [0-1], P = 0.036). Patients in the parasagittal approach group had better tube tolerance scores (median score [IQR],1[1-1] vs. 1 [1-1.5], P = 0.042) and shorter total procedure time (median time [IQR], 113 s [98.5-125.5] vs. 188 s [149.5-260], P < 0.001) than those in the transverse approach group. The incidence of sore throat 24 h after extubation was lower in the parasagittal group (8% vs. 36%, P = 0.041). Hoarseness occurred in more than half of the patients in parasagittal group before intubation (72% vs. 40%, P = 0.023).

CONCLUSIONS: Compared to the transverse approach, the ultrasound-guided parasagittal approach showed improved efficacy in terms of the quality of airway topical anesthesia and shorter total procedure time for superior laryngeal nerve block.

TRIAL REGISTRATION: This prospective, randomized controlled trial was approved by the Ethics Committee of Nanjing First Hospital (KY20220425-014) and registered in the Chinese Clinical Trial Registry (19/6/2022, ChiCTR2200061287) prior to patient enrollment. Written informed consent was obtained from all participants in this trial.

PMID:39097713 | DOI:10.1186/s12871-024-02612-8

Vagus nerve stimulation in lesional and Non-Lesional Drug-Resistant focal onset epilepsies

Epilepsy Behav. 2024 Aug 2;159:109948. doi: 10.1016/j.yebeh.2024.109948. Online ahead of print.

ABSTRACT

PURPOSE: Drug-resistant epilepsy (DRE) affects one-third of patients with focal epilepsy. A large portion of patients are not candidates for epilepsy surgery, thus alternative options, such as vagus nerve stimulation (VNS), are proposed. Our objective is to study the effect of vagus nerve stimulation on lesional versus non-lesional epilepsies.

METHODS: This is a retrospective cohort study in a single center in London, Ontario, which includes patients with DRE implanted with VNS, implanted between 1997-2018 and the date of analysis is December 2023.

PARTICIPANTS: Patients implanted with VNS were classified by lesional (VNS-L) and non-lesional (VNS-NL) based on their MRI head findings. We further subdivided the VNS groups into patients with VNS alone versus those who also had additional epilepsy surgeries.

RESULTS: A total of 29 patients were enrolled in the VNS-L, compared to 29 in the VNS-NL. The median age of the patients in the study was 31.8 years, 29.31 % were men (N = 17). 41.4 % (n = 12) of the patients were VNS responders (≥50 % seizure reduction) in the VNS-L group compared to 62.0 % (n = 18) in the VNS-NL group (p = 0.03). When other epilepsy surgeries were combined with VNS in the VNS-L group, the median rate of seizure reduction was greater (72.4 (IQR 97.17-45.88) than the VNS-NL group 53.9 (IQR 92.22-27.92); p = 0.27).

CONCLUSIONS: VNS is a therapeutic option for patients with lesional epilepsy, with slightly inferior results compared to patients with non-lesional epilepsy. Patients implanted with VNS showed higher seizure reduction rates if they had previous epilepsy surgeries. This study demonstrates that VNS in lesional epilepsies can be an effective treatment.

PMID:39096795 | DOI:10.1016/j.yebeh.2024.109948