The protective role of vagus nerve stimulation in ischemia-reperfusion injury

Heliyon. 2024 May 9;10(10):e30952. doi: 10.1016/j.heliyon.2024.e30952. eCollection 2024 May 30.

ABSTRACT

Ischemia-reperfusion injury (IRI) encompasses the damage resulting from the restoration of blood supply following tissue ischemia. This phenomenon commonly occurs in clinical scenarios such as hemorrhagic shock, severe trauma, organ transplantation, and thrombolytic therapy. Despite its prevalence, existing treatments exhibit limited efficacy against IRI. Vagus nerve stimulation (VNS) is a widely utilized technique for modulating the autonomic nervous system. Numerous studies have demonstrated that VNS significantly reduces IRI in various organs, including the heart, brain, and liver. This article reviews the pathological processes during IRI and summarizes the role and possible mechanisms of VNS in IRI of different organs. Furthermore, this review addresses the current challenges of VNS clinical applications, providing a novel perspective on IRI treatment.

PMID:38770302 | PMC:PMC11103530 | DOI:10.1016/j.heliyon.2024.e30952

Central amygdala is related to the reduction of aggressive behavior by monosodium glutamate ingestion during the period of development in an ADHD model rat

Front Nutr. 2024 May 3;11:1356189. doi: 10.3389/fnut.2024.1356189. eCollection 2024.

ABSTRACT

INTRODUCTION: Monosodium glutamate (MSG), an umami substance, stimulates the gut-brain axis communication via gut umami receptors and the subsequent vagus nerves. However, the brain mechanism underlying the effect of MSG ingestion during the developmental period on aggression has not yet been clarified. We first tried to establish new experimental conditions to be more appropriate for detailed analysis of the brain, and then investigated the effects of MSG ingestion on aggressive behavior during the developmental stage of an ADHD rat model.

METHODS: Long-Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo were individually housed from postnatal day 25 for 5 weeks. Post-weaning social isolation (PWSI) was given to escalate aggressive behavior. The resident-intruder test, that is conducted during the subjective night, was used for a detailed analysis of aggression, including the frequency, duration, and latency of anogenital sniffing, aggressive grooming, and attack behavior. Immunohistochemistry of c-Fos expression was conducted in all strains to predict potential aggression-related brain areas. Finally, the most aggressive strain, SHR/Izm, a known model of attention-deficit hyperactivity disorder (ADHD), was used to investigate the effect of MSG ingestion (60 mM solution) on aggression, followed by c-Fos immunostaining in aggression-related areas. Bilateral subdiaphragmatic vagotomy was performed to verify the importance of gut-brain interactions in the effect of MSG.

RESULTS: The resident intruder test revealed that SHR/Izm rats were the most aggressive among the four strains for all aggression parameters tested. SHR/Izm rats also showed the highest number of c-Fos + cells in aggression-related brain areas, including the central amygdala (CeA). MSG ingestion significantly decreased the frequency and duration of aggressive grooming and attack behavior and increased the latency of attack behavior. Furthermore, MSG administration successfully increased c-Fos positive cell number in the intermediate nucleus of the solitary tract (iNTS), a terminal of the gastrointestinal sensory afferent fiber of the vagus nerve, and modulated c-Fos positive cells in the CeA. Interestingly, vagotomy diminished the MSG effects on aggression and c-Fos expression in the iNTS and CeA.

CONCLUSION: MSG ingestion decreased PWSI-induced aggression in SHR/Izm, which was mediated by the vagus nerve related to the stimulation of iNTS and modulation of CeA activity.

PMID:38765817 | PMC:PMC11099272 | DOI:10.3389/fnut.2024.1356189

Paired vagus nerve stimulation drives precise remyelination and motor recovery after myelin loss

bioRxiv [Preprint]. 2024 May 12:2024.05.10.593609. doi: 10.1101/2024.05.10.593609.

ABSTRACT

Myelin loss in the central nervous system can cause permanent motor or cognitive deficits in patients with multiple sclerosis (MS). While current immunotherapy treatments decrease the frequency of demyelinating episodes, they do not promote myelin repair or functional recovery. Vagus nerve stimulation (VNS) is a neuromodulation therapy which enhances neuroplasticity and the recovery of motor function after stroke, but its effects on myelin repair are not known. To determine if VNS influences myelin repair, we applied VNS following a demyelinating injury and measured longitudinal myelin dynamics and functional recovery. We found that VNS promotes remyelination by increasing the generation of myelinating oligodendrocytes. Pairing VNS with a skilled reach task leads to the regeneration of myelin sheaths on previously myelinated axon segments, enhancing the restoration of the original pattern of myelination. Moreover, the magnitude of sheath pattern restoration correlates with long-term motor functional improvement. Together, these results suggest that recovery of the myelin sheath pattern is a key factor in the restoration of motor function following myelin loss and identify paired VNS as a potential remyelination therapy to treat demyelinating diseases.

PMID:38766201 | PMC:PMC11100833 | DOI:10.1101/2024.05.10.593609

Adverse event monitoring and reporting in pediatric neuromodulatory studies: A systematic review

J Psychiatr Res. 2024 May 15;175:359-367. doi: 10.1016/j.jpsychires.2024.05.035. Online ahead of print.

ABSTRACT

Neuromodulatory interventions are relatively novel and approaches to studying harms and tolerability have varied. Using a checklist based on guidelines from Good Clinical Practice and the Harms Extension of the CONSORT (Consolidated Standards of Reporting Trials) Statement, we identified how adverse events are measured, assessed, and reported in studies evaluating neuromodulation for the treatment of mental and neurodevelopmental disorders among children and adolescents. A systematic literature review identified 56 experimental and quasi-experimental studies evaluating transcranial magnetic stimulation (TMS), transcranial alternating (tACS) or direct (tDCS) current stimulation, transcranial pulse stimulation (TPS), and vagus or trigeminal nerve stimulation (VNS or TNS). For 22 studies (39%), the types of adverse events to be monitored were identified, and for 31 studies (55%), methods for collecting adverse event data were described. Methods for assessing adverse events were less commonly described with 23 studies (41%) having details on assessing event severity, and 11 studies (20%) having details on assessing event causality. Among 31 studies with reported results, headache, skin irritation, and general pain or discomfort were the most reported across studies. Seizure, untoward medical occurrences, and intracranial bleeding, edema, or other intracranial pathology were considered serious events, but these events were not reported as occurring in any results-based papers. Taken together, the findings from this review indicate that most studies of pediatric neuromodulatory interventions did not include descriptions of adverse event monitoring and evaluation. Comprehensive event monitoring and reporting across studies can significantly augment the current knowledge base.

PMID:38761518 | DOI:10.1016/j.jpsychires.2024.05.035

The Effect of taVNS at 25 Hz and 100 Hz on Parkinson’s Disease Gait-A Randomized Motion Sensor Study

Mov Disord. 2024 May 17. doi: 10.1002/mds.29826. Online ahead of print.

ABSTRACT

BACKGROUND: Transcutaneous electrostimulation of the auricular branch of the vagal nerve (taVNS) has the propensity to reach diffuse neuromodulatory networks, which are dysfunctional in Parkinson’s disease (PD). Previous studies support the use of taVNS as an add-on treatment for gait in PD.

OBJECTIVES: We assessed the effect of taVNS at 25 Hz (taVNS25), taVNS at 100 Hz (taVNS100), and sham earlobe stimulation (sVNS) on levodopa responsive (arm swing velocity, arm range of motion, stride length, gait speed) and non-responsive gait characteristics (arm range of motion asymmetry, anticipatory postural adjustment [APA] duration, APA first step duration, APA first step range of motion), and turns (first turn duration, double 360° turn duration, steps per turn) in advanced PD.

METHODS: In our double blind sham controlled within-subject randomized trial, we included 30 PD patients (modified Hoehn and Yahr stage, 2.5-4) to assess the effect of taVNS25, taVNS100, and sVNS on gait characteristics measured with inertial motion sensors during the instrumented stand and walk test and a double 360° turn. Separate generalized mixed models were built for each gait characteristic.

RESULTS: During taVNS100 compared to sVNS arm swing velocity (P = 0.030) and stride length increased (P = 0.027), and APA duration decreased (P = 0.050). During taVNS25 compared to sVNS stride length (P = 0.024) and gait speed (P = 0.021) increased and double 360° turn duration decreased (P = 0.039).

CONCLUSIONS: We have found that taVNS has a frequency specific propensity to improve stride length, arm swing velocity, and gait speed and double 360° turn duration in PD patients. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

PMID:38757756 | DOI:10.1002/mds.29826

Transcutaneous vagus nerve stimulation improves Long COVID symptoms in a female cohort: a pilot study

Front Neurol. 2024 May 2;15:1393371. doi: 10.3389/fneur.2024.1393371. eCollection 2024.

ABSTRACT

BACKGROUND: Long COVID, also known as Post-COVID-19 syndrome, is characterized by multisystemic symptoms that persists for weeks to years beyond acute infection. It disproportionately affects women and those with pre-existing anxiety/depression, conditions more prevalent in females. The vagus nerve, with its extensive innervation and regulation of critical bodily functions, has become a focal point for therapeutic interventions. Transcutaneous vagus nerve stimulation (t-VNS) has emerged as a promising non-invasive treatment for COVID-19 conditions.

METHODS: This pilot study assessed the efficacy of t-VNS in 24 female Long COVID patients (45.8 ± 11.7 years old; 20.2 ± 7.1 months since infection), who underwent a 10-day t-VNS intervention at home (30 min/session, twice a day). Cognition was considered the primary outcome, with anxiety, depression, sleep, fatigue, and smell as secondary outcomes. Outcomes were measured at baseline, post-intervention, and 1-month follow-up.

RESULTS: Significant improvements were observed in various cognitive functions, anxiety, depression, and sleep at post-intervention, with benefits remaining or progressing at 1-month follow-up. Improvements in fatigue were delayed, reaching statistical significance at 1-month follow-up compared to baseline. No significant changes were noted in olfactory performance.

CONCLUSION: This pilot study provides preliminary evidence supporting the potential of t-VNS as a therapeutic intervention for female Long COVID patients. The encouraging results justify further rigorous investigation through larger, randomized controlled trials to confirm the efficacy of t-VNS, assess its generalizability to male cohorts, and explore biological markers to inform personalized treatment approaches. Our findings support the allocation of resources to conduct such trials and advance the understanding of t-VNS as a potential treatment for Long COVID.

PMID:38756213 | PMC:PMC11097097 | DOI:10.3389/fneur.2024.1393371

Transcutaneous vagus nerve stimulation modulates depression-like phenotype induced by high-fat diet via P2X7R/NLRP3/IL-1beta in the prefrontal cortex

CNS Neurosci Ther. 2024 May;30(5):e14755. doi: 10.1111/cns.14755.

ABSTRACT

BACKGROUND: Depression is a common psychiatric disorder in diabetic patients. Depressive mood associated with obesity/metabolic disorders is related to the inflammatory response caused by long-term consumption of high-fat diets, but its molecular mechanism is unclear. In this study, we investigated whether the antidepressant effect of transcutaneous auricular vagus nerve stimulation (taVNS) in high-fat diet rats works through the P2X7R/NLRP3/IL-1β pathway.

METHODS: We first used 16S rRNA gene sequencing analysis and LC-MS metabolomics assays in Zucker diabetic fatty (ZDF) rats with long-term high-fat diet (Purina #5008) induced significant depression-like behaviors. Next, the forced swimming test (FST) and open field test (OFT) were measured to evaluate the antidepressive effect of taVNS. Immunofluorescence and western blotting (WB) were used to measure the microglia state and the expression of P2X7R, NLRP3, and IL-1β in PFC.

RESULTS: Purina#5008 diet induced significant depression-like behaviors in ZDF rats and was closely related to purine and inflammatory metabolites. Consecutive taVNS increased plasma insulin concentration, reduced glycated hemoglobin and glucagon content in ZDF rats, significantly improved the depressive-like phenotype in ZDF rats through reducing the microglia activity, and increased the expression of P2X7R, NLRP3, and IL-1β in the prefrontal cortex (PFC).

CONCLUSION: The P2X7R/NLRP3/IL-1β signaling pathway may play an important role in the antidepressant-like behavior of taVNS, which provides a promising mechanism for taVNS clinical treatment of diabetes combined with depression.

PMID:38752512 | PMC:PMC11097256 | DOI:10.1111/cns.14755

Transcutaneous auricular vagus nerve stimulation enhances short-latency afferent inhibition via central cholinergic system activation

Sci Rep. 2024 May 16;14(1):11224. doi: 10.1038/s41598-024-61958-8.

ABSTRACT

The present study examined the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on short-latency afferent inhibition (SAI), as indirect biomarker of cholinergic system activation. 24 healthy adults underwent intermittent taVNS (30 s on/30 s off, 30 min) or continuous taVNS at a frequency of 25 Hz (15 min) along with earlobe temporary stimulation (15 min or 30 min) were performed in random order. The efficiency with which the motor evoked potential from the abductor pollicis brevis muscle by transcranial magnetic stimulation was attenuated by the preceding median nerve conditioning stimulus was compared before taVNS, immediately after taVNS, and 15 min after taVNS. Continuous taVNS significantly increased SAI at 15 min post-stimulation compared to baseline. A positive correlation (Pearson coefficient = 0.563, p = 0.004) was observed between baseline SAI and changes after continuous taVNS. These results suggest that 15 min of continuous taVNS increases the activity of the cholinergic nervous system, as evidenced by the increase in SAI. In particular, the increase after taVNS was more pronounced in those with lower initial SAI. This study provides fundamental insight into the clinical potential of taVNS for cholinergic dysfunction.

PMID:38755234 | PMC:PMC11099104 | DOI:10.1038/s41598-024-61958-8

An optoelectronic implantable neurostimulation platform allowing full MRI safety and optical sensing and communication

Sci Rep. 2024 May 15;14(1):11110. doi: 10.1038/s41598-024-61330-w.

ABSTRACT

A novel programmable implantable neurostimulation platform based on photonic power transfer has been developed for various clinical applications with the main focus of being safe to use with MRI scanners. The wires usually conveying electrical current from the neurostimulator to the electrodes are replaced by optical fibers. Photovoltaic cells at the tip of the fibers convert laser light to biphasic electrical impulses together with feedback signals with 54% efficiency. Furthermore, a biocompatible, implantable and ultra-flexible optical lead was developed including custom optical fibers. The neurostimulator platform incorporates advanced signal processing and optical physiological sensing capabilities thanks to a hermetically sealed transparent nonmetallic casing. Skin transparency also allowed the development of a high-speed optical transcutaneous communication channel. This implantable neurostimulation platform was first adapted to a vagus nerve stimulator for the treatment of epilepsy. This neurostimulator has been designed to fulfill the requirements of a class III long-term implantable medical device. It has been proven compliant with standard ISO/TS10974 for 1.5 T and 3 T MRI scanners. The device poses no related threat and patients can safely undergo MRI without specific or additional precautions. Especially, the RF induced heating near the implant remains below 2 °C whatever the MRI settings used. The main features of this unique advanced neurostimulator and its architecture are presented. Its functional performance is evaluated, and results are described with a focus on optoelectronics aspects and MRI safety.

PMID:38750033 | PMC:PMC11096369 | DOI:10.1038/s41598-024-61330-w

Heart rate variability and vasovagal tone index in brachycephalic dogs

An Acad Bras Cienc. 2024 May 10;96(2):e20231250. doi: 10.1590/0001-3765202420231250. eCollection 2024.

ABSTRACT

Brachycephalic breeds of dogs, most of which show signs of the brachycephalic syndrome may have greater parasympathetic stimulation than other breeds, leading to higher values of heart rate variability and vagal tone index. The aim of this study was to establish a computerized electrocardiographic study and an assessment of the vagus sympathetic balance through heart rate variability and vagal tone index of five brachycephalic breeds compared to mesocephalic dogs. Sixty dogs were used, divided into groups made up of Boxers, English Bulldogs, French Bulldogs, Pugs, Shih-Tzu and no defined breed mesocephalic dogs. Statistical analysis was carried out using the Shapiro-Wilk test, Kruskal-Wallis and Dunn’s test or ANOVA and Bonferroni (p<0.05). In the evaluation of vagal sympathetic balance among all the dogs, there was a negative correlation between heart rate and HRV 10RR (r = – 0.7678; p < 0.0001), HRV 20RR (r = – 0.8548, p < 0.0001) and VVTI (r = – 0.2770; p = 0.0321). It can therefore be concluded that the dog’s breed and morphology did not alter its electrocardiographic parameters or heart rate variability. The vagal tone index, which in other studies differed in brachycephalic dogs, showed no difference when compared separately in brachycephalic breeds.

PMID:38747800 | DOI:10.1590/0001-3765202420231250