Cholinergic Stimulation Exerts Cardioprotective Effects and Alleviates Renal Inflammatory Responses after Acute Myocardial Infarction in Spontaneous Hypertensive Rats (SHRs)

Pharmaceuticals (Basel). 2024 Apr 24;17(5):547. doi: 10.3390/ph17050547.

ABSTRACT

BACKGROUND: In this investigation, we explored the effects of pharmacological cholinergic stimulation on cardiac function and renal inflammation following acute myocardial infarction (AMI) in spontaneously hypertensive rats (SHRs).

METHODS: Adult male SHRs were randomized into three experimental groups: sham-operated; AMI + Veh (infarcted, treated with vehicle); and AMI + PY (infarcted, treated with the cholinesterase inhibitor, pyridostigmine bromide (PY)-40 mg/kg, once daily for seven days). Rats were euthanized 7 or 30 days post-surgery. The clinical parameters were assessed on the day before euthanasia. Subsequent to euthanasia, blood samples were collected and renal tissues were harvested for histological and gene expression analyses aimed to evaluate inflammation and injury.

RESULTS: Seven days post-surgery, the AMI + PY group demonstrated improvements in left ventricular diastolic function and autonomic regulation, and a reduction in renal macrophage infiltration compared to the AMI + Veh group. Furthermore, there was a notable downregulation in pro-inflammatory gene expression and an upregulation in anti-inflammatory gene expression. Analysis 30 days post-surgery showed that PY treatment had a sustained positive effect on renal gene expression, correlated with a decrease in biomarkers, indicative of subclinical kidney injury.

CONCLUSIONS: Short-term cholinergic stimulation with PY provides both cardiac and renal protection by mitigating the inflammatory response after AMI.

PMID:38794117 | DOI:10.3390/ph17050547

Retention rate of vagus nerve stimulation for the treatment of drug-resistant epilepsy: A single-centre, retrospective study

Epilepsy Res. 2024 May 21;203:107383. doi: 10.1016/j.eplepsyres.2024.107383. Online ahead of print.

ABSTRACT

The aim of this single-centre, retrospective, observational study was to evaluate long-term effectiveness of vagus nerve stimulation (VNS) in drug-resistant epilepsy (DRE) by using retention rate as a surrogate measure for seizure reduction. We included all patients with DRE, treated at the adult neurology department of the University Hospitals Leuven and who started VNS therapy from January 1, 1994, until May 1, 2021, with follow-up data cutoff on January 1, 2023. Retention rate of VNS was defined as the percentage of patients who maintain VNS at established time points. We estimated cumulative retention rate and battery replacement rate and correlated these with seizure reduction, using Kaplan-Meier analysis. Statistical analysis of potential predictors of VNS outcome (age, sex and epilepsy duration at implantation) was performed using mono- and multivariate analyses. VNS was started in 110 patients with DRE, with a mean follow-up of 8.7 years (SD 6.5). VNS was discontinued in 55 patients (50%), with ineffectiveness as the main reason for discontinuation (98%). The battery was replaced at least once in 42 patients (38%). Estimated retention rates were 70%, 52%, 45% and 33% after 5, 10, 15 and 20 years, respectively. Estimated first battery replacement rates were 16%, 42% and 47% after 5, 10 and 15 years, respectively. Both estimates showed a statistically significant correlation with seizure reduction. No independent predictors of long-term outcome of VNS were found. This is the first long-term study using retention rate of VNS to assess effectiveness. VNS is a well-tolerated therapy, but retention rates decline with long follow-up.

PMID:38795656 | DOI:10.1016/j.eplepsyres.2024.107383

Speed of heart rate changes during postural provocations in children and adolescents

Sci Rep. 2024 May 24;14(1):11938. doi: 10.1038/s41598-024-62000-7.

ABSTRACT

Heart rate is under constant autonomic influence but the development of the influence in children is not fully understood. Continuous electrocardiograms were obtained in 1045 healthy school-age children (550 females) during postural provocations with body position changes between supine, sitting, standing, supine, standing, sitting and supine (in this order), 10 min in each position with position changes within 20 s. Heart rate was measured in each position and speed of heart rate changes between positions were assessed by regressions of rates versus timing of individual cardiac cycles. Supine heart rate was gradually decreasing with age: 82.32 ± 9.92, 74.33 ± 9.79, 67.43 ± 9.45 beats per minute (bpm) in tertile age groups < 11, 11-15, > 15 years, respectively (p < 0.0001), with no significant sex difference. Averaged speed of heart rate changes differed little between sexes and age groups but was significantly faster during rate deceleration than acceleration (e.g., supine ↔ standing: 2.99 ± 1.02 vs. 2.57 ± 0.68 bpm/s, p < 0.0001). The study suggests that in children, vagal heart rate control does not noticeably change between ages of approximately 6-19 years. The gradual resting heart rate decrease during childhood and adolescence is likely caused by lowering of cardiac sympathetic influence from sympathetic overdrive in small children to adult-like sympatho-vagal balance in older adolescents.

PMID:38789480 | DOI:10.1038/s41598-024-62000-7

Postinspiratory and preBötzinger complexes contribute to respiratory-sympathetic coupling in mice before and after chronic intermittent hypoxia

Front Neurosci. 2024 May 6;18:1386737. doi: 10.3389/fnins.2024.1386737. eCollection 2024.

ABSTRACT

The sympathetic nervous system modulates arterial blood pressure. Individuals with obstructive sleep apnea (OSA) experience numerous nightly hypoxic episodes and exhibit elevated sympathetic activity to the cardiovascular system leading to hypertension. This suggests that OSA disrupts normal respiratory-sympathetic coupling. This study investigates the role of the postinspiratory complex (PiCo) and preBötzinger complex (preBötC) in respiratory-sympathetic coupling under control conditions and following exposure to chronic intermittent hypoxia (CIH) for 21 days (5% O2-80 bouts/day). The surface of the ventral brainstem was exposed in urethane (1.5 g/kg) anesthetized, spontaneously breathing adult mice. Cholinergic (ChAT), glutamatergic (Vglut2), and neurons that co-express ChAT and Vglut2 at PiCo, as well as Dbx1 and Vglut2 neurons at preBötC, were optogenetically stimulated while recording activity from the diaphragm (DIA), vagus nerve (cVN), and cervical sympathetic nerve (cSN). Following CIH exposure, baseline cSN activity increased, breathing frequency increased, and expiratory time decreased. In control mice, stimulating PiCo specific cholinergic-glutamatergic neurons caused a sympathetic burst during all phases of the respiratory cycle, whereas optogenetic activation of cholinergic-glutamatergic PiCo neurons in CIH mice increased sympathetic activity only during postinspiration and late expiration. Stimulation of glutamatergic PiCo neurons increased cSN activity during the postinspiratory phase in control and CIH mice. Optogenetic stimulation of ChAT containing neurons in the PiCo area did not affect sympathetic activity under control or CIH conditions. Stimulating Dbx1 or Vglut2 neurons in preBötC evoked an inspiration and a concomitant cSN burst under control and CIH conditions. Taken together, these results suggest that PiCo and preBötC contribute to respiratory-sympathetic coupling, which is altered by CIH, and may contribute to the hypertension observed in patients with OSA.

PMID:38774786 | PMC:PMC11107097 | DOI:10.3389/fnins.2024.1386737

Virtual reality-assessment of social interactions and prognosis in depression

J Affect Disord. 2024 May 21;359:234-240. doi: 10.1016/j.jad.2024.05.098. Online ahead of print.

ABSTRACT

BACKGROUND: Freud proposed that excessive self-blame-related motivations such as self-punishing tendencies play a key role in depression. Most of the supporting evidence, however, is based on cross-sectional studies and questionnaire measures.

METHODS: In this pre-registered (NCT04593537) study, we used a novel Virtual Reality (VR) task to determine whether maladaptive self-blame-related action tendencies prospectively identify a subgroup of depression with poor prognosis when treated as usual over four months in primary care. Ninety-eight patients with depression (Patient Health Questionnaire-9 ≥ 15), screening negatively for bipolar and alcohol/substance use disorders, completed the VR-task at baseline (n = 93 completed follow-up).

RESULTS: Our pre-registered statistical/machine learning model prospectively predicted a cross-validated 19 % of variance in depressive symptoms. Contrary to our specific predictions, and in accordance with Freud’s observations, feeling like punishing oneself emerged as prognostically relevant rather than feeling like hiding or creating a distance from oneself. Using a principal components analysis of all pre-registered continuous measures, a factor most strongly loading on feeling like punishing oneself for other people’s wrongdoings (β = 0.23, p = 0.01), a baseline symptom factor (β = 0.30, p = 0.006) and Maudsley Staging Method treatment-resistance scores (β = 0.28, p = 0.009) at baseline predicted higher depressive symptoms after four months.

LIMITATIONS: Patients were not assessed with a diagnostic interview.

CONCLUSIONS: Independently and apart from known clinical variables, feeling like punishing oneself emerged as a distinctly relevant prognostic factor and should therefore be assessed and tackled in personalised care pathways for difficult-to-treat depression.

PMID:38777276 | DOI:10.1016/j.jad.2024.05.098

Efficacy and safety of transcutaneous auricular vagus nerve stimulation (ta-VNS) in the treatment of tinnitus: protocol for an updated systematic review and meta-analysis

BMJ Open. 2024 May 21;14(5):e082906. doi: 10.1136/bmjopen-2023-082906.

ABSTRACT

INTRODUCTION: With an increasing incidence and significant effects on patients, tinnitus has become a major disease burden. There is a dearth of therapies with established efficacy for tinnitus. Transcutaneous auricular vagus nerve stimulation (ta-VNS) is being investigated as a potential therapy for tinnitus, but the current body of evidence remains inconclusive due to conflicting results across different studies. As a result, this protocol aims to synthesise and update the evidence to clarify whether ta-VNS is effective and safe for alleviating tinnitus.

METHODS AND ANALYSIS: To identify relevant randomised controlled trials (RCTs), seven representative bibliographical databases will be searched from their inception to December 2023: PubMed, Embase (via OVID), Cochrane Library, Chinese National Knowledge Infrastructure, Wangfang Database, Chinese BioMedical Literature Database, and Chongqing VIP Chinese Science and Technology Periodical Database. Publications in English or Chinese will be considered for inclusion. RCTs comparing ta-VNS with active treatments, no intervention, waitlist control or sham ta-VNS in adult patients with subjective tinnitus will be included. Studies on objective tinnitus will be excluded. Primary outcome is tinnitus symptom severity measured by validated scales. With all eligible trials included, when applicable, quantitative analysis via meta-analyses will be performed using RevMan V.5.4.1 software. Otherwise, a qualitative analysis will be conducted. The methodological quality of the included RCTs will be assessed using the Risk of Bias 2.0 tool. Sensitivity analyses, subgroup analysis and publication bias evaluation will also be performed. The Grading of Recommendations, Assessment, Development, and Evaluation approach will be used to grade the certainty of the evidence.

ETHICS AND DISSEMINATION: Ethical approval is not required for this systematic review, as no primary data will be collected. The results will be reported and disseminated through publication in a peer-reviewed journal.

PROSPERO REGISTRATION NUMBER: CRD42022351917.

PMID:38772894 | PMC:PMC11110564 | DOI:10.1136/bmjopen-2023-082906

The protective role of vagus nerve stimulation in ischemia-reperfusion injury

Heliyon. 2024 May 9;10(10):e30952. doi: 10.1016/j.heliyon.2024.e30952. eCollection 2024 May 30.

ABSTRACT

Ischemia-reperfusion injury (IRI) encompasses the damage resulting from the restoration of blood supply following tissue ischemia. This phenomenon commonly occurs in clinical scenarios such as hemorrhagic shock, severe trauma, organ transplantation, and thrombolytic therapy. Despite its prevalence, existing treatments exhibit limited efficacy against IRI. Vagus nerve stimulation (VNS) is a widely utilized technique for modulating the autonomic nervous system. Numerous studies have demonstrated that VNS significantly reduces IRI in various organs, including the heart, brain, and liver. This article reviews the pathological processes during IRI and summarizes the role and possible mechanisms of VNS in IRI of different organs. Furthermore, this review addresses the current challenges of VNS clinical applications, providing a novel perspective on IRI treatment.

PMID:38770302 | PMC:PMC11103530 | DOI:10.1016/j.heliyon.2024.e30952

Paired vagus nerve stimulation drives precise remyelination and motor recovery after myelin loss

bioRxiv [Preprint]. 2024 May 12:2024.05.10.593609. doi: 10.1101/2024.05.10.593609.

ABSTRACT

Myelin loss in the central nervous system can cause permanent motor or cognitive deficits in patients with multiple sclerosis (MS). While current immunotherapy treatments decrease the frequency of demyelinating episodes, they do not promote myelin repair or functional recovery. Vagus nerve stimulation (VNS) is a neuromodulation therapy which enhances neuroplasticity and the recovery of motor function after stroke, but its effects on myelin repair are not known. To determine if VNS influences myelin repair, we applied VNS following a demyelinating injury and measured longitudinal myelin dynamics and functional recovery. We found that VNS promotes remyelination by increasing the generation of myelinating oligodendrocytes. Pairing VNS with a skilled reach task leads to the regeneration of myelin sheaths on previously myelinated axon segments, enhancing the restoration of the original pattern of myelination. Moreover, the magnitude of sheath pattern restoration correlates with long-term motor functional improvement. Together, these results suggest that recovery of the myelin sheath pattern is a key factor in the restoration of motor function following myelin loss and identify paired VNS as a potential remyelination therapy to treat demyelinating diseases.

PMID:38766201 | PMC:PMC11100833 | DOI:10.1101/2024.05.10.593609

Central amygdala is related to the reduction of aggressive behavior by monosodium glutamate ingestion during the period of development in an ADHD model rat

Front Nutr. 2024 May 3;11:1356189. doi: 10.3389/fnut.2024.1356189. eCollection 2024.

ABSTRACT

INTRODUCTION: Monosodium glutamate (MSG), an umami substance, stimulates the gut-brain axis communication via gut umami receptors and the subsequent vagus nerves. However, the brain mechanism underlying the effect of MSG ingestion during the developmental period on aggression has not yet been clarified. We first tried to establish new experimental conditions to be more appropriate for detailed analysis of the brain, and then investigated the effects of MSG ingestion on aggressive behavior during the developmental stage of an ADHD rat model.

METHODS: Long-Evans, WKY/Izm, SHR/Izm, and SHR-SP/Ezo were individually housed from postnatal day 25 for 5 weeks. Post-weaning social isolation (PWSI) was given to escalate aggressive behavior. The resident-intruder test, that is conducted during the subjective night, was used for a detailed analysis of aggression, including the frequency, duration, and latency of anogenital sniffing, aggressive grooming, and attack behavior. Immunohistochemistry of c-Fos expression was conducted in all strains to predict potential aggression-related brain areas. Finally, the most aggressive strain, SHR/Izm, a known model of attention-deficit hyperactivity disorder (ADHD), was used to investigate the effect of MSG ingestion (60 mM solution) on aggression, followed by c-Fos immunostaining in aggression-related areas. Bilateral subdiaphragmatic vagotomy was performed to verify the importance of gut-brain interactions in the effect of MSG.

RESULTS: The resident intruder test revealed that SHR/Izm rats were the most aggressive among the four strains for all aggression parameters tested. SHR/Izm rats also showed the highest number of c-Fos + cells in aggression-related brain areas, including the central amygdala (CeA). MSG ingestion significantly decreased the frequency and duration of aggressive grooming and attack behavior and increased the latency of attack behavior. Furthermore, MSG administration successfully increased c-Fos positive cell number in the intermediate nucleus of the solitary tract (iNTS), a terminal of the gastrointestinal sensory afferent fiber of the vagus nerve, and modulated c-Fos positive cells in the CeA. Interestingly, vagotomy diminished the MSG effects on aggression and c-Fos expression in the iNTS and CeA.

CONCLUSION: MSG ingestion decreased PWSI-induced aggression in SHR/Izm, which was mediated by the vagus nerve related to the stimulation of iNTS and modulation of CeA activity.

PMID:38765817 | PMC:PMC11099272 | DOI:10.3389/fnut.2024.1356189

Adverse event monitoring and reporting in pediatric neuromodulatory studies: A systematic review

J Psychiatr Res. 2024 May 15;175:359-367. doi: 10.1016/j.jpsychires.2024.05.035. Online ahead of print.

ABSTRACT

Neuromodulatory interventions are relatively novel and approaches to studying harms and tolerability have varied. Using a checklist based on guidelines from Good Clinical Practice and the Harms Extension of the CONSORT (Consolidated Standards of Reporting Trials) Statement, we identified how adverse events are measured, assessed, and reported in studies evaluating neuromodulation for the treatment of mental and neurodevelopmental disorders among children and adolescents. A systematic literature review identified 56 experimental and quasi-experimental studies evaluating transcranial magnetic stimulation (TMS), transcranial alternating (tACS) or direct (tDCS) current stimulation, transcranial pulse stimulation (TPS), and vagus or trigeminal nerve stimulation (VNS or TNS). For 22 studies (39%), the types of adverse events to be monitored were identified, and for 31 studies (55%), methods for collecting adverse event data were described. Methods for assessing adverse events were less commonly described with 23 studies (41%) having details on assessing event severity, and 11 studies (20%) having details on assessing event causality. Among 31 studies with reported results, headache, skin irritation, and general pain or discomfort were the most reported across studies. Seizure, untoward medical occurrences, and intracranial bleeding, edema, or other intracranial pathology were considered serious events, but these events were not reported as occurring in any results-based papers. Taken together, the findings from this review indicate that most studies of pediatric neuromodulatory interventions did not include descriptions of adverse event monitoring and evaluation. Comprehensive event monitoring and reporting across studies can significantly augment the current knowledge base.

PMID:38761518 | DOI:10.1016/j.jpsychires.2024.05.035