Microglial and Macrophage Plasticity and Regional Cerebral Blood Flow in the Prenatal Brain and Gut Under Vagus Nerve Stimulation

Methods Mol Biol. 2025;2868:285-301. doi: 10.1007/978-1-0716-4200-9_15.

ABSTRACT

An intricate relationship exists between the vagus nerve and systemic immune cell regulation, specifically during fetal development. Little is known about the connection between the vagus nerve and the brain’s regional circulatory control. In this chapter, we present a methodology for studying the impact of vagus nerve signaling on these connections in the developing fetus using the sheep model for human fetal physiology. First, we present the protocol to study the connection between the vagus nerve physiology and the regional cerebral blood flow (rCBF). Next, we detail the protocol for measuring how vagal signaling alters microglial cell plasticity in gut and brain. In previous work, our team showed that vagotomy results in amplified redistribution of rCBF toward subcortical structures in the fetal brain. Conversely, efferent VNS reduces rCBF to cortical structures while afferent VNS diminishes the rise of rCBF to subcortical structures (independent of cortical rCBF) when compared to controls in the fetal brain. Additionally, our team showed that Iba-1 expression, a marker for microglial cellular signaling activation, rises in a dose-dependent relationship with systemic inflammatory activation in the setting of vagotomy. The findings support existing preclinical and clinical evidence in adult human physiology that vagotomy is neuroprotective for neurodegenerative diseases such as Parkinson’s likely via a glial cell-mediated mechanism. Vagus nerve stimulation (VNS) has also been shown to alter rCBF patterns in adults with treatment-resistant depression, underscoring the importance of further investigation of the relationship between the vagus nerve and rCBF as early as in utero. Together, the body of evidence emphasizes that the vagal pathway is an important player in the programming of microglial cell phenotypes within the developing brain. Further study is needed to better understand the significance of these relationships for the development and treatment of early susceptibility to neuroinflammatory and neurodegenerative disorders in later life. Therefore, we present a methodology for assessing rCBF and morphometric features of microglial and macrophage cell activation to allow future teams to expand on the existing body of work and further examine these relationships at a cellular and systems’ levels.

PMID:39546236 | DOI:10.1007/978-1-0716-4200-9_15